A generalized approach to parameterizing convection combining ensemble and data assimilation techniques

نویسنده

  • Georg A. Grell
چکیده

[1] A new convective parameterization is introduced that can make use of a large variety of assumptions previously introduced in earlier formulations. The assumptions are chosen so that they will generate a large spread in the solution. We then show two methods in which ensemble and data assimilation techniques may be used to find the best value to feed back to the larger scale model. First, we can use simple statistical methods to find the most probable solution. Second, the ensemble probability density function can be considered as an appropriate ‘‘prior’’ (a’priori density) for Bayesian data assimilation. Using this ‘‘prior’’, and information about observation likelihood, measured meteorological or climatological data can be directly assimilated into model fields. Given proper observations, the application of this technique is not restricted to convective parameterizations, but may be applied to other parameterizations as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment

An analysis of a regional severe weather outbreak that was related to a mesoscale convective vortex (MCV) is performed. The MCV-spawning mesoscale convection system (MCS) formed in northwest Kansas along the southern periphery of a large cutoff 500-hPa low centered over western South Dakota. As the MCS propagated into eastern Kansas during the early morning of 1 June 2007, an MCV that became ev...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parame...

متن کامل

Development of a hybrid variational-ensemble data assimilation technique for observed lightning tested in a mesoscale model

Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Geostationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investig...

متن کامل

Data assimilation in a system with two scales—combining two initialization techniques

An ensemble Kalman filter (EnKF) is used to assimilate data onto a non-linear chaotic model, coupling two kinds of variables. The first kind of variables of the system is characterized as large amplitude, slow, large scale, distributed in eight equally spaced locations around a circle. The second kind of variables are small amplitude, fast, and short scale, distributed in 256 equally spaced loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002